UNIVERSITY OF SOUTH ALABAMA DEPARTMENT OF MATHEMATICS AND STATISTICS

Comprehensive Examination PROBABILITY Summer Quarter 1997

I) State the definitions of the following terms:

A) σ -algebra

- B) The set of Borel sets
- C) random variables
- D) probability space

II) State the following theorems

- A) The Central Limit Theorem
- B) Chebyshev's Inequality
- C) The Strong Law of Large Numbers
- D) Baye's Formula

III) Suppose that $X \sim N(0, 1)$.

- 1. Prove that X and X^2 are **not** independent.
- 2. Prove that $Cov(X, X^2 = 0)$.
- 3. Give an example of two random variables that are not independent but have covariance 0.
- 4. Derive the density function for X^2 .

IV) Do the following problems.

A) If A_1, A_2, \cdots is an infinite sequence of events such that $P(A_i) = 0, i = 1, 2, \cdots$, prove that

 $P(\bigcup_{i=1}^{\infty})A_i) = 0.$ B) If B_1, B_2, \cdots is an infinite sequence of events such that $P(B_i) = 1, i = 1, 2, \cdots$, prove that $P(\bigcap_{i=1}^{\infty} B_i) = 1.$

V) If $X \sim \Gamma(s, \gamma)$, (gamma) prove that the moment generating function for X is $(\frac{\gamma}{\gamma - t})^s$.